Ability to sprint is a key parameter (Faude et al., J Sports Sci, 2012, 30:625–31) and is the most frequent action in goal situations. Previously, other authors have established linear relationship between countermovement jump, leg power and percentage body fat, and team success (Arnason et al. MSSE, 2014, 36(2), 278–85). The body composition, as seen through a large content of muscle and low content of fat tissue, could be a particularly strong predictor of rapid movement performance, as jumping performance or sprint (Copic et al., JSCR, 2014). Thus, our principal aim is to explore potential relationships between anthropometric measures and athletic performance, focusing on strength related variables. Twelve young soccer player (age 22 ± 2 y, body mass 69.5 ± 7.1 kg, height 179 ± 8 cm; body fat 7.6 ± 2.2%) performed a CMJ, CMJ-BW loaded, 40 m sprint (analysing partial times at 15 and 30 m) and one Repetition Maximum (RM) in back squat test. Main interesting findings from this study were the strong associations between anthropometric measures and relevant strength variables related to physical condition performance in soccer. CMJ and CMJ-BW loaded was strongly correlated with 1 RM, 40 m sprint performance and shuttle sprint at 15 and 30 m (r from 0.64 to 0.89; p < 0.05 to <0.001). Likewise BF was surprisingly highly correlated to CMJ, IRM and different sprint times (r from 0.54 to 0.86; p < 0.05 to <0.001). In accordance to (Comfort et al., JSCR, 2013, 28(1), 173–7; Brocherie et al. (2014) J Sports Sci 17: 1–12), the results of this study illustrates the importance of developing high levels of strength in order to enhance sprint and jump performance in youth soccer players. Besides, Nikolaidis (CEJM, 2012, 7(6), 783–9) evidenced that a threshold exists in BF, above which muscular power output is affected to a great extent. Therefore, BF was negatively associated with physical fitness parameters.

Pacing is the goal-directed distribution of effort across an event to cover a set-distance in the shortest time. Athletes’ pre-race expectations may influence performance and this study investigated the effect of positive and negative expectations on running time-trial pacing. Male athletes (n = 11) 200 m split times were recorded over seven 1000 m self-paced time-trials (three baseline, four experimental). The experiment consisted of four conditions: informed caffeine/given caffeine (CC 3.5 mg/kg); informed caffeine/given placebo (CP); informed placebo/given caffeine (PC); informed placebo/given placebo (PP). Conditions CC and CP were positive expectations of receiving caffeine to improve performance and PC and PP were negative expectations of receiving a placebo to not affect performance. Average 1000 m speeds were: CC = 5.80 ± 0.26 m/s; CP = 5.81 ± 0.27 m/s; PC = 5.75 ± 0.26 m/s; PP = 5.67 ± 0.29 m/s; Baseline = 5.70 ± 0.24 m/s, with CC and CP faster than each other trial (Effect size (ES)=0.2–0.3). Initial 0–200 m speed was greater on CC (0.1–0.2 m/s faster; ES = 0.2–0.3) and CP (0.2 m/s faster; ES = 0.3–0.4) compared to PC and PP, respectively. A non-trivial increase in speed from 800–1000 m was solely observed on CC (5.78 ± 0.35 m/s), relative to speeds between 600–800 m on CC (5.69 ± 0.33 m/s; ES = 0.3),
OC9 A simple method to measure force-velocity profile in counter movement jump

P Jiménez-Reyes, P Samozino, V Cuadrado- Peñafiel, F Conceição, JJ González-Badillo and J-B Morin

doi: 10.1136/bjsports-2014-094245.9