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 Physiological Adaptations to Training  
in Competitive Swimming: A Systematic Review 

by 
Mário J. Costa 1,4, Govindasamy Balasekaran 2, J. Paulo Vilas-Boas 3,5,  

Tiago M. Barbosa 2,4 

The purpose of this systematic review was to summarize longitudinal studies on swimming physiology and get 
implications for daily practice. A computerized search of databases according to the PRISMA statement was employed. 
Studies were screened for eligibility on inclusion criteria: (i) present two testing points; (ii) on swimming physiology; 
(iii) using adult elite swimmers; (iv) no case-studies or with small sample sizes. Two independent reviewers used a 
checklist to assess the methodological quality of the studies. Thirty-four studies selected for analysis were gathered into 
five main categories: blood composition (n=7), endocrine secretion (n=11), muscle biochemistry (n=7), cardiovascular 
response (n=8) and the energetic profile (n=14). The mean quality index was 10.58 ± 2.19 points demonstrating an 
almost perfect agreement between reviewers (K = 0.93). It can be concluded that the mixed findings in the literature are 
due to the diversity of the experimental designs. Micro variables obtained at the cellular or molecular level are sensitive 
measures and demonstrate overtraining signs and health symptoms. The improvement of macro variables (i.e. main 
physiological systems) is limited and may depend on the athletes’ training background and experience. 

Key words: physiology; longitudinal; studies; exercise, swimming. 
 
Introduction 

Competitive swimming is one of the 
popular sports to be researched extensively. The 
aquatic environment presents specific challenges 
for humans. Hence, researchers are constantly 
willing to have a deeper insight into human 
performance in water. Cross-sectional and 
longitudinal designs have been selected to link 
swimming performance with physiological and 
biomechanical determinant factors. Cross-
sectional studies involve the observation of a 
population, or a representative subset, at one 
single point in time. Such studies may be used to 
describe some distinctive features of the 
population or may support some sort of causality  
 

 
between variables. Longitudinal designs carry out 
a series of observations more than once on 
members of the study population over a period of 
time. The repeated and subsequent measurements 
throughout time can be represented by a dataset 
based on a three-dimensional axis (Van der Kamp 
and Bijleveld, 1998): 

 
Yijt = (i = 1, 2,, N; j = 1, 2,.., M; t = 1, 2,.. ,T),        (1) 

 
where ijt represents the axis, N represents 

the number of subjects, M represents the variables 
and T represents the time measurements. Thus, 
subjects representative of an entire longitudinal  
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sample are evaluated with the same experimental 
procedures, in a certain number of occasions 
throughout a timeframe. With this approach, it is 
possible to analyze the effect between the 
variables and how these variables, isolated (i.e., 
bivariate analysis) or in combination (i.e., 
multivariate analysis), contribute to sports 
performance.  

The training programs, which are well 
planned with the appropriate physiological 
stimulus, are an effective way to disturb 
homeostasis and adapt the organism to 
subsequent improvements. Based on this 
reasoning, a large amount of evidence has been 
produced in the last few decades, enlightening us 
about the relationships between sports 
performance and training. One of the first reviews 
about training interventions in swimming was 
conducted by Lavoie and Montpetit (1986). The 
authors described the effects of training on 
energetic, respiration and cardiovascular variables 
as well as body composition. A few findings on 
health-related fields, such as muscle biochemistry, 
endocrinology and temperature regulation were 
also mentioned. Besides that, in the 1970s, 1980s 
and 1990s, most of the physiological research 
focused on “macro”-variables (i.e., main 
physiological systems, such as cardiorespiratory 
responses); research on “micro”-variables (i.e., at 
a cellular and molecular level) is now the main 
focus of several scientific teams, and it is a trend 
to be maintained in the next years as it happens in 
other competitive sports. However, to the best of 
our knowledge, no update about the recent 
advancements regarding the physiological 
adaptations (i.e., chronic adaptations assessed 
with longitudinal designs) to training has been 
done since then. The review papers published 
over the last 20 years had a strong focus on 
physiology and/or biomechanical acute responses 
in cross-sectional studies (Barbosa et al., 2010; 
Smith et al., 2002; Toussaint and Beck, 1992). On 
top of that, systematic reviews published in the 
meantime were about one or a couple of very 
specific training topics (Aspenes and Karlsen, 
2012; Costa et al., 2012). Since most of the field 
practitioners are not used to work or consider 
these minor physiological aspects, there is a need 
to congregate pieces of evidence and clarify the 
relationship between dose response and training. 

The purpose of this systematic review was  
 

 
to summarize the state of the art about the blood, 
hormonal, enzymatic, cardiovascular and 
energetic adaptations to swim training. The 
existence of mixed findings between studies 
dealing with physiological data within the season 
was hypothesized. This paper was largely 
restricted to research involving mature college-
aged elite swimmers of both genders, and this 
should be kept in mind when considering the 
research-based points made. 

Material and Methods 
Methodological procedures considering 

the standards for systematic reviews according to 
the PRISMA statement were employed (Moher et 
al., 2009). Expert researchers conducted the 
process to fulfil the suggestions and guidelines, 
such as (McGowan and Sampson, 2005) (i) the 
need of transparency (readers should be able to 
verify that the review is not open to bias) and (ii) 
reproducibility (readers and other researchers 
should be able to replicate the methods and arrive 
at the same results). 

A search was conducted of literature 
dating from January 1st of 1970 until December 
31th of 2013 using electronic literature databases 
(PubMed, ISI Web of Knowledge, Index Medicus, 
MEDLINE, Scopus, SPORTDiscus). Studies were 
identified using the following key terms 
individually and/or combined: “swimming”, 
“swimming effects”, “training effects”, “seasonal 
variations”, physiology and swim training”, 
“blood and swim training”, “cardiovascular and 
swim training”, “hormonal and swim training”, 
“enzymatic and swim training”, “energetics” and 
“swim training”. Two independent searches 
produced two different lists of publications that 
were then consolidated into one single list. The 
results were initially screened according to the 
title to exclude any obviously irrelevant articles. 
Potential hits that met the inclusion criteria were 
searched thereafter. When necessary, attempts 
were made to contact the authors to obtain the 
missing paper.  
Inclusion and Exclusion Procedures 

The reduced evidence on other cohorts 
(youth or masters swimmers) when comparing 
them with the elite cohort led us to restrict the 
review. Included studies were focused on 
longitudinal interventions on physiology of 
mature college-aged elite swimmers. The  
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excluded studies were (i) studies not having at 
least two testing points with the same subjects, (ii) 
studies based on other swimming topics rather 
than physiology, (iii) studies using other 
chronological ages (e.g., children, age-group or 
masters) instead of adult elite swimmers or other 
competitive levels, and (iv) case studies or those 
with a small sample size, which may compromise 
the sample power and external validity of the 
findings (e.g., N < 5).  

In respect to the research question, 
relevant studies were categorized in five main 
groups: (i) blood composition, (ii) endocrine 
secretion, (iii) muscle biochemistry, (iv) 
cardiovascular response, and (v) energetic profile. 
The information extracted from the included 
studies was based on (i) design and setting, (ii) 
sample characteristics, (iii) aim of the 
intervention, and (iv) major findings. 
Quality Assessment 

All relevant studies underwent a formal 
methodological assessment by two independent 
reviewers. Since there is no validated quality 
assessment tool suitable for this kind of field 
interventions (i.e., sports performance), the 
quality index score of each paper was calculated 
with a checklist described earlier (Downs and 
Black, 1998). This checklist presents a large range 
of scoring profiles: reporting, external validity, 
bias, confounding and power. In each profile, all 
items received rating scores, where the maximum 
possible score to obtain from the index was 32 
points. When necessary or appropriate, 
disagreements between reviewers were solved by 
discussion and consensus. The degree of 
agreement in scoring procedure was obtained 
based on the Kappa index (K) and thresholds 
interpreted according to Landis and Koch’s (1977) 
suggestion, where there is (i) no agreement if K < 
0, (ii) poor agreement if 0 < K < 0.19, (iii) fair 
agreement if 0.20 < K < 0.39, (iv) moderate 
agreement if 0.40 < K < 0.59, (v) substantial 
agreement if 0.60 < K < 0.79, and (vi) almost 
perfect agreement if 0.80 < K < 1.00. 

Results 
Our search identified 303 potential 

relevant papers of which 269 did not meet the 
inclusion criteria. The reasons for exclusion were 
being cross-sectional (139 studies), longitudinal 
focused on other topics (72 studies), participants  
 

 
from other chronological ages or competitive level 
(49 studies) and case studies (9 studies) (Figure 1). 
A total of 34 studies were considered for further 
analysis. From these, the earliest one was 
published in April of 1980 (Rushall and Busch, 
1980) and the most recent in December of 2013 
(Costa et al., 2013a).  

Studies were examined for each category 
according to their reported data: (i) blood 
composition (7 studies), (ii) endocrine secretion 
(11 studies), (iii) muscle biochemistry (7 studies), 
(iv) cardiovascular response (8 studies), and (v) 
energetic profile (14 studies). Since 8 studies 
reported various data, they were included in 
several physiological topics. Hence, the total 
number of papers in categorization does not 
match the sum of the partial number by 
categories. The topic with a higher number of 
papers and probably with a more consistent body 
of knowledge is the energetic profile. Muscle 
biochemistry is the topic with reduced evidence 
or at least with fewer papers published. 

The quality index had a mean score of 
11.04 ± 2.04 points (range: 8 to 19). The reliability 
between both reviewers showed an almost perfect 
agreement (K = 0.93) in the scoring procedure. The 
studies scored similarly in their reporting style. 
All studies performed better in reporting items 
than in external validity, bias, confounding, and 
power. Items related with the aim and hypothesis 
description, sample characteristics, estimates of 
random variability, and the definition of the 
outcomes to be measured were the ones more 
clearly defined in the majority of the included 
studies. The higher ratings of quality were found 
in the blood composition category (12.14 ± 3.45 
points). Only one study calculated the sample 
power to detect a clinically meaningful effect 
(Rama et al., 2013). At least in two studies, the 
losses of subjects to follow up were reported 
(Costa et al., 2013a; Costa et al., 2013b).  

Seven studies monitored changes in the 
blood composition of elite swimmers during 
training. The overall quality scores ranged 
between 8.5 to 19 points (average score for all 
papers: 12.14 ± 3.45 points; average score for 
papers published in the last 10 years: 14.33 ± 4.16 
points). Interventions were mostly focused on 
hematological or immune system components.  

Eleven studies analyzed hormonal 
variations during heavy and intense training  
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phases of the season. The overall quality scores 
ranged between 8 to 11.5 points (average score for 
all papers: 9.70 ± 1.03 points; only one paper 
found in the last 10 years with a quality score of 
10 points). The hormonal markers often collected 
through blood samples were cortisol, testosterone 
and the catecholamines. 

Seven studies monitored changes in 
muscle biochemistry of elite swimmers during 
different training periods. The overall quality 
scores ranged between 9 to 11 points (average 
score for all papers: 10.29 ± 0.81 points; no paper 
was found in the last ten years). The experimental 
approaches used muscle biopsy or blood sample 
assessment to collect enzymatic data.  

Eight studies analyzed changes in the 
cardiovascular responses of elite swimmers. The  

 
overall quality scores ranged between 8.5 to 12 
points (average score for all papers: 10.06 ± 1.24 
points; average score for papers published in the 
last 10 years: 11.20 ± 1.04 points). The studies dealt 
with heart rate or blood pressure variability 
through several training periods.  

Fourteen studies monitored changes in 
the energetic profile of elite swimmers. The 
overall quality scores ranged between 8.5 and 14 
points (average score for all papers: 11.32 ± 1.58 
points; average score for papers published in the 
last 10 years: 12.60 ± 1.28 points). Interventions 
were generally aimed at assessing the lactate 
threshold (LT), peak lactate (Lapeak) and maximal 
oxygen uptake (VO2max). 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1 
Search strategy; * eight studies categorized in several domains 
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Table 1 
Summary of longitudinal interventions on blood composition 

Author 
 

Quality 
Score 

Design 
and 

setting 

Sample 
characteristic

s 
Intervention Findings 

Rushall 
and Busch 

(1980) 

 

8.5 12 
months 

Elite 
swimmers 

Effect of hard 
training 

following taper 

Hb decreased 
with hard training 

and increased 
during taper. 

Mackinno
n et al. 
(1997) 

 

9.5 4 weeks Well-trained 
swimmers 

Compare 
cohorts exposed 
to high training 

Hb, hematrocrit, 
red blood cells 

remained 
unchanged. 

Mujika et 
al. (1998) 

11 16 weeks Highly 
trained 

swimmers 

Effect of hard 
training 

following taper 
 

Hb increased. 

Gleeson et 
al. (2004) 

13 5 months 11 elite 
swimmers 

Effects of hard 
training 

following taper 
 

T-lymphocyte 
response 
remained 

unchanged. 

Santhiago 
et al. 

(2009) 

11 14 weeks 25 
International 

level 
swimmers 

 

Analyse annual 
changes 

Hematocrit 
decreased during 

the endurance 
phase and 

increased after. 
Morgado 

et al. 
(2012) 

13 7 and 17 
weeks 

Competitive 
level 

swimmers 
 

Effect of long 
term intensive 

training 

Significant 
changes in 

neutrophils, 
monocytes and 
dendritic cells. 

Rama et 
al. (2013) 

19 12 
months 

Elite 
swimmers 

and controls 

Track 
respiratory 
infections 

Respiratory 
infections rise 

from decreases in 
nature killing 

cells. 
Hb – hemoblobin 
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Table 2 
Summary of longitudinal interventions on endocrine secretion 

Author 
 

Quality 
Score 

Design 
and setting 

Sample 
characteristics 

Intervention Findings 

Hakkinen 
et al. 

(1987) 
 

10.5 1 year 9 elite swimmers Effects of 
prolonged 
endurance 

training 

Cor and Test 
showed non-

significant 
changes. 

Kirwan et 
al. (1988) 

 

9 2 weeks 12 college 
swimmers 

Effects of high 
volume and 

high intensity 

Increases in Cor 
Epi and Nor. 

Costill et 
al. (1991) 

 

10.5 25 weeks 24 college 
swimmers 

Effects of high  
volume 

Increases in Cor 
and decreases in 

Test. 
Hooper et 
al. (1993) 

 

8 6 months 14 elite swimmers Detecting 
overtraining 

markers 

Unchanged Cor 
and Nor and 

decreases in Epi. 
Flynn et 
al. (1994) 

 

9 18 weeks 5 college 
swimmers 

Detecting 
overtraining 

markers 

Unchanged Cor 
and decreases in 

Test. 
Mujika et 
al. (1996) 

 

11 16 weeks 8 elite swimmers Intense training 
followed by 

taper 

Unchanged Cor, 
Test, Epi and Nor 

levels. 
Mujika et 
al. (1996) 

 

11.5 26 weeks 8 elite swimmers Effects of 
annual training 

and taper 

Cor remained 
unchanged. 

Tyndall et 
al. (1996) 

 

10 18 weeks 19 elite swimmers Verify insulin 
action by 
hormonal 
changes 

Cor or Test 
changes not affect 
insulin action after 

hard training. 
Mackinno

n et al. 
(1997) 

 

9.5 4 weeks 24 elite swimmers Effects of high 
volume 

Nor was the best 
marker of 

overtraining 
symptoms. 

Hooper et 
al. (1999) 

 

10 2 weeks 10 elite swimmers Effects of taper High performance 
prediction based 
on Nor changes. 

Atlaoui et 
al. (2006) 

10 12 weeks 14 international and 
national swimmers 

Associate 
endocrine levels 

with 
performance 

Nor values were 
related with 

performance. 

Cor – cortisol; Test – testosterone; Epi – epinephrine; Nor – norepinephrine. 
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Table 3 
Summary of longitudinal interventions on enzymatic activity 

Author 
 

Quality 
Score 

Design 
and setting 

Sample 
characteristics 

Intervention Findings 

Houston et al. 
(1981) 

 

10 6.5 weeks 10 college 
swimmers 

Effects of 2 types 
of training 

Increases in HEX, 
PHOSK, PHOSL e SD 

activity. 
Burke et al. 

(1982) 
9.5 1 year Elite 

swimmers 
Hard training 

followed by taper. 
 

Increases in CK until 
taper with following 

decreases. 
Millard et al. 

(1985) 
11 5 months 20 college 

swimmers 
Hard training 

followed by taper. 
 

Increases in CK until 
taper with following 

decreases. 
Costill et al. 

(1985) 
11 5 months 8 college 

swimmers 
Hard training 
followed by 
detraining 

 

Increases in PHOSK 
and PHOSL in deltoid 
but without significant 

losses during 
detraining. 

Kirwan et al. 
(1988) 

 

9 2 weeks 12 college 
swimmers 

Increases in 
training intensity 

Increases in CK levels. 

Costill et al. 
(1991) 

 

10.5 25 weeks 24 college 
swimmers 

Increases in 
training volume 

Increases in CS 
activity in deltoid and 

CK levels. 
Mujika et al. 

(1996) 
11 16 weeks 8 elite 

swimmers 
Hard training 

followed by taper 
CK levels remained 

unchanged. 
CK - creatine kinase; HEX – hexokinase; PHOSK – phosphofructokinase; PHOSL – phosphorylase; SD - succinate dehydrogenase. 

 
Table 4 

Summary of longitudinal interventions on cardiovascular response 
Author 

 
Quality 
Score 

Design 
and setting 

Sample 
characteristics 

Intervention Findings 

Houston et 
al. (1981) 

 

10 6.5 weeks 10 college 
swimmers 

Effects of two 
types of training 

Decreases in 
HRpeak. 

Sharp et al. 
(1984) 

 

8.5 6 months 12 college 
swimmers 

Analyse changes in 
HR 

Decreases in HRpeak 
only in the first two 

months of the 
season. 

Kirwan et al. 
(1988) 

 

9 2 weeks 12 college 
swimmers 

Effects of taper HRrest remained 
unchanged. SBP 

remained 
unchanged. 

Costill et al. 
(1991) 

 

10.5 25 weeks 24 college 
swimmers 

Effects of an 
increased volume 

Decreases in HRpeak 
only in the first two 

months of the 
season. 

Flynn et al. 
(1994) 

 

9 18 weeks 5 college 
swimmers 

Analyse effects of 
one season 

MBP remained 
unchanged. 

Anderson et 
al. (2006) 

 

11.5 6 years 40 international 
and national level 

swimmers 

Analyse within 
and between 

season changes 

HRpeal remained 
unchanged. 

Atlaoui et al. 
(2007) 

 

10 7 weeks 13 international 
and national level 

swimmers 

Relationship 
between HR and 

performance 

HRrest remained 
unchanged with no 

association with 
performance. 

Psycharakis 
(2011) 

12 6 months 17 international 
level swimmers 

Analyse HR 
annual changes 

HRpeak remained 
unchanged. 

HRpeak – peak heart rate; HRrest – resting heart rate; MBP- mean blood pressure; SBP – systolic blood pressure. 
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Table 5 
Summary of longitudinal interventions on the energetic profile 

Author 
 

Quality 
Score 

Design  
and 

setting 

Sample  
characteristics 

Intervention Findings 

Houston et 
al. (1981)  
 

10 6.5 
weeks 

10 college 
swimmers 

Effects of two 
types of 
training on 
VO2max 

VO2max remained 
unchanged in both 
programs. 

Sharp et al. 
(1984)  
 

8.5 6 
month
s 

12 college 
swimmers 

Analyse 
changes in LT 
profile 

Increases in LT at the 
first two months of the 
season. 

Ryan et al. 
(1990)  
 

10 6 
month
s 

14 college 
swimmers 

Effects of high 
volume 

Volume above 49.000 
km/week did not change 
LT. 

Costill et 
al. (1991)  
 

10.5 25 
weeks 

24 college 
swimmers 

Effects of high 
volume 

Increases in LT and 
reductions in Lapeak. 

Johns et al. 
(1992)  
 

10 14 
days 

12 
intercollegiate 
swimmers 

Effects of taper VO2max remained 
unchanged. 

Wakayoshi 
et al. (1993)  
 

11 6 
month
s 

8 college 
swimmers 

Aerobic 
training effects 

Increases in LT and 
reductions in Lapeak. 

Termin and 
Pendergast 
(2000)  
 

11 4 
years 

22 US division I 
swimmers 

Effects of an 
increased 
training 
program 

Increases in Lapeak. And 
VO2max. 

Pyne et al. 
(2001)  
 

12 8 
month
s 

12 world class 
swimmers 

Analyse 
annual changes 

Increases in LT. 

Anderson 
et al. (2006)  
 

11.5 6 
years 

40 international 
and national 
level swimmers 

Analyse 
annual changes 

Increases in LT within 
and between seasons. 

Faude et al. 
(2008)  
 

12 5 
weeks 

10 national level 
swimmers 

Compare two 
types of 
training 

Both high intensity and 
high volume increased 
LT. 

Santhiago 
et al. (2009)  
 

11 14 
weeks 

23 international 
level swimmers 

Changes at 
different stages 
of the season 

Only men swimmers 
improved LT. 

Costa et al. 
(2012)  
 

14 9 
month
s 

10 International 
and national 
level swimmers 

Compare 
changes 
between 
cohorts 

National swimmers 
improved in a higher 
range LT. 

Costa et al. 
(2013b) 
 

13 9 
month
s 

9 international 
and national 
level swimmers 

Analyse 
annual changes 

LT and VO2max increased 
slightly.  

Costa et al. 
(2013a) 

14 2 
years 

12 international 
and national 
level swimmers 

Analyse 
changes within 
and between 
seasons 

LT showed non-
significant increases 
within and between 
seasons. Lapeak increased 
significantly. 

LT – lactate threshold; Lapeak – peak of blood lactate concentrations; VO2max – maximal oxygen upt 
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Discussion 

The focus of this investigation was to 
summarize evidence about the blood, hormonal, 
enzymatic, cardiovascular and energetic 
adaptations to swim training. Controversial 
findings were found in the literature mostly due 
to the diversity of the experimental designs. 
Reports on micro variables showed links between 
overreaching/overtraining and the poor health 
status of the swimmers. Papers dealing with 
macro variables justified the physiological 
changes based on training background and 
experience.  
Blood profile 

The swimmers’ blood composition 
monitoring (i.e., hematological or immune 
parameters) may indicate poor dietary intake or 
an irrational training load, leading to increased 
susceptibility to illness (Morgado et al., 2012).  

Four studies examined the variation of 
hematological parameters during long-lasting 
periods. Rushall and Busch (1980) showed that 
haemoglobin values of elite swimmers were 
reduced during hard training phases of the season 
and increased during the reduced workload of 
tapering. In a 14-week training intervention, 
Santhiago et al. (2009) verified that hematocrit and 
mean corpuscular volume diminished during the 
endurance phase (men: 5.8 and 7.2%; women: 11.6 
and 6.8%, respectively) and increased in the 
intensity increased phase (men: 7.2 and 6.0%; 
women: 7.4 and 5.2%, respectively) of the season. 
Mujika et al. (1998) demonstrated increases in 
hemoglobin and mean corpuscular volume of 
highly trained swimmers after 12 weeks of intense 
training followed by 4 weeks of taper. Conversely, 
serum ferritin, hemoglobin, erythrocyte number, 
hematocrit, and mean red cell volume showed no 
changes after 4 weeks of intensified training 
(Mackinnon et al., 1997). The total duration of the 
interventions, the number of testing points, and 
the possible difference between training loads 
constitute some of the reasons for this discrepancy 
between results. The applicability of the findings 
highlights the importance of regular blood sample 
analysis in each stage of the season mostly to 
adjust training loads accordingly.  

Understanding the effects of training on 
the immune system should be considered an 
additional measure to help coaches detect the  
 

poor health status of their swimmers. Three 
studies reported findings on immune parameters 
or respiratory infections during long periods of 
swim training. Morgado et al. (2012) observed 
changes in the number of monocytes (from 468 to 
429 cells/µl), neutrophils (from 4536 to 3929 
cells/µl), and dendritic cells (from 49 to 56 cells/µl) 
after 24 weeks of training with high volume and 
intensity. Glesson et al. (2004) found no significant 
differences in T-lymphocyte function after 
extended periods of training at the elite level. 
Rama et al. (2013) determined that upper 
respiratory episodes (67%) clustered with the 
period of high intensity and volume training were 
accompanied by a decrease in the percentage of 
natural killer cells in the immune system (ranging 
from 17 to 27% of loss according with the specific 
stage of the season). Currently, the scarce number 
of studies on this topic leaves unclear indications 
of a real trend and therefore makes it more 
challenging to provide reliable evidence to 
practitioners. Probably, regularly using blood 
samples from top-level swimmers should be a 
must in monitoring the response to training loads. 
Beyond investigating the effects of different 
training loads on the immune response, we 
should try to understand how supplementation 
may improve the immune status according to the 
training load.  
Endocrine Secretion 

Vigorous exercise has a short- and a long-
term effect on the endocrine responses of 
individuals (Viru et al., 1992). Among the 
hormonal markers often collected through blood 
samples there are cortisol, testosterone and 
catecholamines (including epinephrine and 
norepinephrine). Eleven studies were published 
about the effects of training on the endocrine 
response of elite swimmers. From those, nine 
studies analysed hormonal changes in different 
time points of the season, and two studies 
correlated hormonal training effects with 
performance. 

Kirwan et al. (1988) observed that serum 
cortisol significantly increased (from ~17.5 to ~20.6 
µg/dl) by doubling the swimmers’ training 
distance (~4 to ~9 km/day) while maintaining the 
intensity at approximately 95% of maximal 
oxygen uptake. Costill et al. (1991) determined an 
increase in cortisol (from 19 to 24 µg/dl) and a 
decrease in testosterone (from ~8 to 6 ng/ml)  
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during the period of increased training volume. 
Tyndall et al. (1996) observed higher resting 
plasma cortisol concentrations in women 
compared to men at the beginning of the season 
when training volume averaged 5.5 km/day; 
albeit, Hooper et al. (1993) found unchanged 
norepinephrine or cortisol concentrations at five 
testing points during a 6-month season. Similar 
statistically non-significant changes were 
observed by Hakinnen et al. (1989) in the 
concentrations of serum testosterone (from 30.9 to 
~29 nmol/l) and cortisol (from 0.70 to ~66 µmol/l) 
at the first and most intensive training period of 
the year. Although hormonal values are in similar 
range when comparing various samples of 
swimmers, remaining studies fail to detect 
significant hormonal changes in response to 
training (Flynn et al., 1994; Mackinon et al., 1997; 
Mujika et al., 1996a; Mujika et al., 1996b). Despite 
being consensual that any abrupt changes in the 
training load will trigger an endocrine response, 
the small sample sizes and the discrepancy 
between testing points can help explain the trivial 
hormonal changes in some reports.  

With regard to the impact on race times, 
Hooper et al. (1999) observed that the change in 
plasma norepinephrine concentration predicted 
the change in swim time with tapering (r2 = 0.82) 
by itself. Similarly, Atlaoui et al. (2006) 
determined that the percentage changes in 
performance during reduced training phases had 
significant relationships (r = 0.60) with 
norepinephrine levels. Athletes with overtraining 
symptoms after several weeks of high-intense 
training were found to have decreased levels of 
norepinephrine (Mackinnon et al., 1997). Despite 
few evidence-based practices, high 
norepinephrine concentrations seem to be 
important to avoid symptoms of overtraining and 
maintain the athletes’ health for competition. 

In terms of daily practice, the regular 
assessment of hormonal concentrations during 
heavy and intense training phases should be a 
criterion. Future researchers need to spend more 
effort in understanding hormonal behaviour with 
respect to overtraining and burnout, critically 
analyzing the number of training sessions per 
week, the duration of those sessions, and the 
external load (i.e., high volume and intensity). 
Muscle biochemistry 

Muscle metabolism has been another  
 

 
point of interest in swimming physiology. 
Enzymes are known as body catalysts that have a 
particular action in neuromuscular response. 
Seven studies have focused on how enzymatic 
activity responds to prolonged swim training.  

Houston et al. (1981) found significant 
increases of hexokinase (from ~1.0 to ~1.5 
µmol/min/g), phosphorylase (from ~8.2 to ~10.0 
µmol/min/g), phosphofructokinase (from ~26.1 to 
~35.0 µmol/min/g) and succinate dehydrogenase 
(from ~5.6 to ~7.1 µmol/min/g) activity from the 
deltoid muscle when increasing training volume 
or intensity. A similar finding was reported by 
Costill et al. (1985) showing an increased activity 
in citrate synthase (from ~34 to ~40 µmol/min/g) 
in the deltoid muscle after increased training 
volume. Two other studies determined increases 
in creatine kinase (CK) levels after heavy training 
periods (Burke et al., 1982; Kirwan et al., 1988). 
These chemical adaptations after intense training 
sets may prevent the muscle from contracting and 
thus help the body carry out the desired action. 
However, recovery periods help restore muscle 
chemical function and reduce enzymatic levels 
suggesting that peripheral adaptation may occur 
and improve muscle ability for further efforts 
(Lavoie and Montpetit, 1986). In fact, two other 
studies showed unchanged CK levels after 
seasonal periods with increased training volume 
followed by taper phases (Millard et al., 1985; 
Mujika et al., 1996b). Although there were no 
statistically significant differences, the results of 
Mujika et al. (1996b) showed slight increases in 
CK concentrations after intense training which 
corresponded to declines in competition 
performance before taper. Inconsistent results 
may also rely on the different methods to assess 
muscle biochemistry (muscle biopsy vs. blood 
samples) and on subsequent analysis. In most of 
the interventions, the CK measurement was made 
on the basis of blood serum as markers of muscle 
damage. As CK peaks several hours after the 
cessation of training, as far as we know, the 
reported time point of drawing the blood in such 
interventions was 45 h after intense exercise 
cessation (Millard et al., 1985). Remaining 
interventions (Costill et al., 1991; Mujika et al., 
1996b) made blood sampling in the morning after 
a light training session on the previous day and 
an intensive training session two days before. The 
type of exercise performed may also explain  
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mixed findings. It is well known that serum CK 
concentrations may change in response to 
eccentric exercise, particularly, intense eccentric 
exercise. Swimming is considered a non-eccentric 
exercise mode, due to the reduced body weight 
effect associated to buoyancy and to the lack of 
ballistic actions. Nevertheless, there is evidence of 
relevant co-contraction muscular intervention 
modes, possibly implying not only joint 
stabilization, but also eccentric actions of the 
antagonist muscles.  

Overall, evidence supports that regular 
measurement of enzymatic levels during a season, 
along with other physiological variables, may 
help determine overtraining symptoms in 
swimmers. Further research should try to provide 
insight in the chronic effects of dry-land strength 
training and how this could have a positive effect 
on muscle biochemistry during hard training 
phases and recovery periods. 
Cardiovascular response 

The cardiovascular assessment has been, 
for a long time, an important component for 
training monitoring. Coaches still select on a daily 
basis cardiovascular measures to monitor and 
prescribe training intensity.  

Eight papers studied how cardiovascular 
measures were affected by swim training. 
Houston et al. (1981) observed decreases in the 
peak heart rate recorded during treadmill running 
and tethered swimming (from ~204 to ~193 bpm 
and from ~172 to ~165 bpm, respectively) after 
swim training. Sharp et al. (1984) showed 
unchanged heart rate values during several 
testing points through the season, but the 
swimmers were able to swim faster covering a 
200-m distance freestyle. Despite these reports, 
recent interventions showed unchanged values in 
the peak heart rate (Anderson et al., 2006; 
Psycharakis, 2011) and the resting heart rate 
(Atlaoui et al., 2007; Costill et al., 1991; Flynn et 
al., 1994; Kirwan et al., 1988) over a swimming 
season. The significant changes reported by 
Houston et al. (1981) may be explained by the 
training background of the subjects (only four of 
the ten swimmers recruited had trained during 
the preceding four months). It is known that 
untrained subjects taking part in any vigorous 
training program have a higher odd to show 
significant changes in the cardiovascular response 
than trained counterparts (Earle and Baechle,  
 

 
2004). Hence, a closer inspection is needed to 
clarify the usefulness of heart rate measures to 
monitor the effects of external training loads. 

The two remaining studies on this topic 
failed to find the effects of swim training on blood 
pressure. Kirwan et al. (1988) analyzed the 
cardiovascular responses of 12 male collegiate 
swimmers during 10 days of intense training and 
determined that resting systolic blood pressure 
was not affected when training load increased 
from ~4,200 to ~8.900 m/day. Flynn et al. (1994) 
found no differences in the mean blood pressure 
of swimmers through a full collegiate season. At 
some point of their competitive career, the 
absence and/or tenuous changes observed in adult 
swimmers may result from the inability to induce 
substantial adaptations in the stroke volume, 
mostly due to heart size, that has already reached 
is maximum size and shape (Kubukeli et al., 
2002). Hence, there is a trend to see unchanged 
blood pressure levels after any type of swim 
training through the season. 

Despite cardiovascular monitoring being 
a straightforward procedure, evidence suggests 
that it is not sensitive enough. For instance, heart 
rate response to exercise can be quite variable 
depending on several external factors and not 
only on exercise intensity. Hence, some care 
should be taken if the heart rate or the blood 
pressure is selected to control training effects. 
Energetic profile 

Several changes that might occur on the 
energetic profile are determined by the nature of 
the training stimulus. Training volume, intensity 
and frequency are the components used by 
coaches to work the peak form status of their 
athletes for the most important periods of the 
season (Mujika, 1998). According to this, several 
research groups have assessed the effect of a 
training load on energetics. Fourteen studies were 
included on this chapter showing evidence on LT 
velocity, Lapeak and/or VO2max. 

Six studies found a small change in the LT 
velocity within or between swimming seasons 
(Anderson et al., 2006; Costa et al., 2013b; Pyne et 
al., 2001; Ryan et al., 1990; Santhiago et al., 2009; 
Sharp et al., 1984). Three of those studies showed 
that an increase in training volume during the 
middle of the season did not significantly change 
the LT velocity in the following testing occasions 
(Costa et al., 2013b; Ryan et al., 1990; Sharp et al.,  
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1984). Findings are consistent and show that an 
unchanged LT from a given point of the season 
seems to be an individual limitation and not a 
training issue. In fact, Faude et al. (2008) 
determined that high training volume had no 
advantage compared with high-intensity training 
of lower volume in improving the LT of elite 
swimmers. There are reports that the competitive 
level may also determine the range of change in 
the LT velocity during one competitive season 
(Costa et al., 2012). The effects of high training 
volume mostly used at the start of the season 
promote decreases in glycogen stores. This 
phenomenon results in lower lactate 
concentrations at similar effort intensities through 
the training season (Costill et al., 1991).  

Studies on Lapeak showed that training 
characteristics may determine the trend in Lapeak 
variation. Costill et al. (1991) observed a reduction 
in Lapeak values after 365.8 m submaximal swim 
(from ~13 to ~8 mmol/L) in response to increased 
training volume during the first 8 weeks of the 
season. Wakayoshi et al. (1993) reported that six 
months of aerobic swim training was enough to 
significantly decrease Lapeak after a 400 m 
swimming effort. In contrast, Termin and 
Pendergast (2000) determined increases (from 8.71 
to 11.59 mmol/L) in the Lapeak of swimmers 
included in a high-intensity training program 
over four consecutive seasons. Similarly, Costa et 
al. (2013a) observed increases in the Lapeak after a 
maximal 200 m front crawl test (from ~10 to ~12 
mmol/L) when training intensity increased from 
one season to another. While training with a more 
intense regimen, the muscle is forced into 
adaptations that allow the body to reach higher 
velocities at an increased oxygen debt and 
reduced muscle fatigue, improving anaerobic 
metabolism.  

Few studies dealt with VO2max assessment 
over a long-term training period. Houston et al. 
(1981) found significant increases in VO2max 
during treadmill running (from ~ 3.7 to 4.1 l/min), 
but not during tethered swimming (unchanged at 
3.3–3.4 l/min) after swim training. For Costa et al. 
(2013b), VO2max of elite swimmers remained 
slightly unaltered (between 72 and 76 ml/kg/min) 
in the three testing points during one full season 
of training. Johns et al. (1992) also observed 
consistency in the VO2max (between 3.5–3.2 l/min) 
of collegiate swimmers after a 10-day taper. On  
 

 
the contrary, Termin and Pendergast (2000) 
observed a 20, 9, 8 and 5% increase in VO2max after 
each of the four consecutive swimming seasons of 
the program. The inconsistent findings can be 
explained by the training intensity and the total 
duration of the interventions. In the study of 
Houston et al. (1981), the 6.5 weeks of moderate 
and high intensity training were not sufficient to 
promote substantial adaptations in VO2max. Any 
attempt to induce meaningful adaptations may 
require a longer period of time. Simultaneously, 
the trivial changes of VO2max reported by Costa et 
al. (2013b) are justified by the high competitive 
level of the swimmers recruited. Termin and 
Pendergast (2000) recruited US division I male 
swimmers. One might say that those were 
collegiate subjects with higher range of 
improvement in VO2max. Thus, VO2max is highly 
dependent on the program characteristics and the 
subject’s training background. The capacity to 
transport and use oxygen can increase as a result 
of high intensity training, but this increase is 
dependent on the swimmer’s expertise and tends 
to decrease through consecutive seasons. This 
shows that the type and duration of training may 
elicit different adaptations regarding the transport 
and use of oxygen, as opposed to cardiac size and 
contraction already described in previous 
chapters. 

Understanding the effects of training on 
the energetic pathways is more consistent than 
that of the remaining physiological variables. 
However, a deep understanding should be 
obtained of the effects of different training 
program characteristics (high versus low intensity 
and/or high versus low volume) on swimming 
strokes other than the front crawl. 
Quality assessment 

As a tool to assess the quality of each 
paper, we used a checklist that provided a profile 
of the paper, alerting reviewers to its particular 
methodological strengths and weaknesses. The 
scoring checklist had already been identified as a 
reliable tool to assess the methodological quality 
not only of randomised controlled trials but also 
of non-randomised studies (Downs and Black, 
1998). It has some items related to complex 
procedures such as randomization, blindness, the 
use of control group and/or practical effects. Since 
swimming teams have only a small number of 
caliber swimmers to be assessed, most of the  
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times researchers recruit convenience samples, 
which prevents to extrapolate the result for all 
population. That is the reason why the 
interventions with more careful procedures and 
controlled environmental conditions (e.g. effects 
of swim training on blood composition) had better 
scoring rates. The remaining interventions fail to 
have a more “health” approach and then 
culminate with a lower scoring rate. 

When scoring only the papers published 
in the last ten years, there is a trend toward an 
increase in the scoring rate for all categories. The 
reviewers’ knowledge about methodological 
quality, the journals’ policy about paper quality, 
and the more advanced experimental procedures 
can be found as reasons for this increase in scores 
in the last couple of years. Hence, further studies 
in swimming should take those several 
methodological issues into consideration in the 
experimental setup in order to increase the quality 
of the interventions even more. 

Conclusions 
The included studies about training 

interventions on swimming physiology had more 
expression in the energetic profile category (14 
studies) followed by endocrine secretion (11 
studies), cardiovascular response (8 studies), 
blood composition (7 studies) and muscle 
biochemistry (7 studies). The diversity of the 
experimental designs (e.g., follow-up periods,  

 
training components, gender and competitive 
levels) can explain inconsistent findings through a 
training season. The assessment of micro variables 
at the cellular or molecular level is quite a 
sensitive procedure, but extremely informative 
about overreaching/overtraining symptoms and 
the health status of the swimmers. Hence, the 
regular use of blood samples by medical 
prescription should be an additional measure 
applied by coaches in daily practice. Although the 
findings on macro-variables are more consistent, 
those physiological changes are dependent on the 
swimmers training background and experience. 
Some methodological inadequacies (i.e., absence 
of a control group or reduced sample sizes) can be 
observed in the literature. This should be 
overcome in future research to reduce the 
ambiguity of the results. The interpretation of 
marginal gains and their contribution to the final 
performance should not be neglected. Although 
some studies failed to find significant 
physiological changes, the tiny effect promoted by 
swim training may impair or improve 
competition performance. A deeper insight into 
the less studied areas is needed. Scientists have 
recently started to study the effects of swim 
training on health-related issues such as blood 
modifications and respiratory infections, but 
numerous doubts still remain. 
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